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Abstract

We explore the praticability of optimal shape design for flows modeled by the

Euler equations. We define a functional whose minimum represents the optimality

condition. The gradient of the functional with respect to the geometry is calculated

with the Lagrange multipliers, which are determined by solving a costate equation.

The optimization problem is then examined by comparing the performance of several

gradient-based optimization algorithms. In this formulation, the flow field can be

computed to an arbitrary order of accuracy. Finally, some results for internal flows

with embedded shocks are presented, including a case for which the solution to the

inverse problem does not belong to the design space.

1This research was supported in part under NASA contract no. NAS1-19480 while the author was in

residence at the Institute for Computer Applications in Science and Engineering, NASA Langley Research

Center, Hampton, VA 23681-0001.





1 Introduction

A classical problem in engineering is to define the shape of a vehicle to achieve a required

performance. In fluid dynamics, techniques have been developed to solve the following

inverse problem: given a pressure or a velocity distribution over an aerodynamic body,

determine the corresponding geometry. See, for example, reference [8]. A broader category

of problems can be solved by means of optimization, provided that one is ready to accept

the necessity of computing the flow field hundreds of times. In using models of increased

complexity to describe the flow field, the development of new algorithms is necessary in

many cases to reduce the computational load. In this paper, we investigate one method for

achieving this reduction. The variational technique that is applied in this work has been

used since before complex flows could be integrated numerically. See, for example, refer-

ence [1]. Jameson [4] was the first to apply this technique to computational fluid dynamics.

With this approach, a functional or cost function is determined such that its minimum

represents an optimal solution. By introducing a set of Lagrange multipliers, the gradient

of the functional can be calculated with respect to the geometry by computing the flow

field only once for each gradient evaluation. For incompressible irrotational steady flows, a

further reduction in the computational effort is possible. (See [10].) The formulation devel-

oped in this work is more suited to a correct analysis. In fact, this formulation eliminates

the need to consider the flow field variables dependent on the geometry. In the present

work, we extend the work presented in reference [5]. In reference [5], an exact gradient

of the functional with respect to the design variables was obtained on the discrete level,

which can be a limitation for compressible flows because in presence of shocks the discrete

functional can present discontinuities. In considering compressible flows with embedded

shocks, we derive the gradient on a continuous level. Furthermore, we provide a method

for calculating the conditions that the Lagrange multipliers must satisfy at the boundaries

and at the shock. Finally, we point out that our formulation can be used with complex

flow solvers because the differentiability of the solver is not requested.

2 Problem Statement

The Euler equations are given by

Ut + F_ + G_ = 0

where

U

pu

pv

pe

F
P + pu2 G = puv

puv p + pv 2

u(pc + p) v(pe + p)

with

p = density

(1)



u = x component of velocity vector

v = y component of velocity vector

e = specific total energy

p = pressure

a = speed of sound

3' = specific heats ratio

7-1
B; --
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and p = xp(2e - u 2 - v_). Furthermore,

OF

F : _--_U : A(U)U (2)

and
OG

G = _-_U : B(U)U (3)

where A and B are given in app. I.

We assume that these equations are defined on a physical space (I). In this space is included

a subdomain f_ whose boundary is denoted by F. On the boundary, we define a curvilinear

coordinate s and a normal n = (n_, ny) that points outward. (See fig. 1.)

The optimization problem studied here is defined as the minimization of the functional

g = fr ¢(P,P,U,V, F)ds over all admissible shapes of the subdomain f_, subject to the

steady-state Euler equations with proper boundary conditions on F.

Although the method we present is general, we focus on the following model problem. The

subdomain _ is represented by a nozzle. (See fig. 2). At the inlet, total pressure, total

temperature, and the ratio a = v/u are fixed. At the outlet, if the flow is subsonic, the

static pressure is fixed, and at the solid walls the impermeability condition un_ + vny =

0 is enforced. The upper wall is kept fixed. The lower wall O is represented by the

parameterization

y(@) = _ aifi(x) (4)
i

where the functions fi(x) are some shape functions and a = (al, ..., a;, ...) is the corre-

sponding set of shape coefficients. Given a desirable lower wall pressure distribution p*(x)

and the actual pressure distribution on the lower wall pW(x), the optimization problem

consists in finding a set of shape coefficients ai such that the functional

1 _b(pW,ff = -_ - p* )2d x (5)

is minimized.
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3 Lagrange Multipliers and Optimality

The problem of achieving the minimum is addressed by introducing a set of Lagrange

multipliers. Consider the augmented functional

£(U, a, A, #) = g + _ tA(AUx + BUv)df_ + £ #pV. nds (6)

where V = (u,v). The vector A(x,y) = t(A,, A2, A3, A4) and the scalar g(s) are the contin-

uous equivalents of the Lagrange multipliers.

We calculate the variation of the functional £ with respect to the variation of the functions

U, A, and # and the parameters (_i, respectively. When U(x, y) is increased by a function

eU(x,y), the functional l; increases by an amount eS£v. In the same way, A(x,y) is

increased by _/_(x, y); #(s), by e/_(s); and each ai, by _di.

If we follow the derivation in app. II and take

5£ = 6£u + 3£A + 6£. + 6£_

then we obtain

5£u
= f b O_uo(Pw_p.)_dx+fr,A(An,:+Bnv)_ds +

OpV
Jn/('A_A + tAyB)Udf_ + Jo[ #n _ Uds (7)

where

op (,,+,, ) ( )---Ou-2k 2 ,-u,-v,1 and OpV_ou 0 0 100 1 0 0

Furthermore,

6/ZA = L'X(AU_ + BUv)dl_

= fo/SPV" nds

+ £ #0(pV)0y " n f, ds - L I_pV. t -_zdfi

/0 ]+ #pV. n _ sin0cos0ds 5i

tA(AU_ + BUy) fi cos 0 ds

cos 2 0 ds

(8)

(9)

(10)

where 0 is the angle between the normal n and the y-axis and t = (-ny, nx).
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At the minimum of the functional, we have 6£ = 0 for all possible choices of the functions

U, A, and/] and of the parameters &. This condition is reached when

Note that because of the necessary conditions (eqs. (11)) the unconstrained minimum of the

functional £(U, a, A, #) corresponds to the constrained minimum of the functional £(a).

In fact, we have

_£n=O =_ AU.+BU_=Oand_£.=O =_ pV.n=O

which means that U must satisfy the Euler equations with boundary conditions. In addi-

tion, for the minimum of/2 we have _i£u = 0, which leads to

tAA. + tBAy = 0 on f_ (12)

Op o OpV0U (pW _ p.) cos0 +tA(An_ + Bn_) + pn 0U

At the inlet, outlet, and upper wall,

- 0 on O. (13)

tA(An_ + Bny)U = 0 (14)

Given U and the set of costate eqs. (12) and (14), we can determine uniquely A in gt and

p on O. (See app. III).

Finally, given a and given U and A from the above equations, we can calculate from eq.

(10)

0_ £dp ° £Oai- -_y (p'_-p*)fidx+ tA(AU,+BUy)f, cosOds

/o_y)12 n [ -_xdfi+ • fids-jo#PV't cos 20ds

£ dr,+ IlpV • n -_x sinOcosOds (15)

In cases for which shock occurs in the flow field, we split the domain of integration by

means of a curve T that coincides with the shock where it exists. Then, we follow the same

derivation so far on each of the two subdomains, with T as a boundary. (See app. III.)

The strategy that we use to achieve the minimum of £ is as follows:

1. Start with a set a of shape coefficients.

2. Enforce _£n = 0 and _£, = 0 by finding U such that it satisfies the steady-state

Euler equations and boundary conditions.

3. Enforce _£u = 0 by finding A such that it satisfies the costate equations and

boundary conditions.



4. Calculate V_£. If V_£ = 0 then we havedetermined the minimum; otherwise
continueto steps5 and 6.

5. Update a with criteria based on V_,/;.

6. Restart from step 2.

4 Discrete Problem

We introduce a discrete grid that is defined as (xt, ym) = (Xo + lAx, y(@) + may), where

Ax is constant and Ay is a constant fraction of the local height of the nozzle. (See fig. 3.)

The steady solution of the Euler equations is obtained with a time-dependent technique,

in the frame of an explicit finite-volume code. The conservative variables U are computed

at the cell centers, and the fluxes F and G are evaluated at the cell interfaces with the

approximate Riemann solver in reference [7]. Second-order accuracy is achieved by using

an essentially nonoscillatory scheme [2]. The flow-field values at the cell interfaces, used

as initial conditions for the Riemann problem, are reconstructed by means of a linear

interpolation and a minmod limiter. The amplitude of the integration step is chosen in

accordance with the Courant-Friedrichs-Lewy (CFL) condition.

The costate equations are discretized on the same grid presented above. Because they have

no conservative form, the numerical solution is obtained with a finite-difference scheme.

We introduce a set of curvilinear coordinates _(x, y) and _b(x, y). The costate equations

are then written

t.AA. + tBA¢ = 0 (16)

where A = Aq_ + B_y and B = A%: +B¢y. The transformations q_ and _b are defined as

(xz, ym) _ l and (xl, Ym) _ m, respectively.

We find the solution of eq.(16) as the asymptotic limit of a time-dependent technique.

Consider eq. (16) embedded in time as

+ At + *MAyo + tBA, = 0 (17)

We must select the proper sign for the time derivative. The inlet and outlet boundary

conditions for the costate equations are complementary to those of the flow field equations,

in the sense that if the number of boundary conditions for the flow field is c, then the number

of boundary conditions for the costate equations is 4- c. Therefore, the above equations and

boundary conditions are well posed if we select the negative sign for the time derivative.

In fact, the resulting characteristic pattern is mirror symmetric with respect to that of the

flow-field equations.

In the presence of a shock in the flow field, the matrices t.A and tB are discontinuous. In

particular, the characteristic pattern at the shock indicates the necessity of a boundary

condition for the costate equations. For further discussion, see reference [3].

The costate equations are linear and as such are the boundary conditions. We exploit

this property to numerically solve these equations. Suppose that locally we separate the
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variablesthrough the following approximation:

A(_,_,t) = A'(_,t)+ n"(¢, t). (18)

This separation of variables means that, for example, in a Taylor expansion about the point

(_, $,) we disregard all terms that involve a cross product _ ¢. This approximation is at

least first-order accurate. We substitute eq. (18) into eq. (17) to obtain

H t r t _
-At-A t+ AA_,+ BA¢=0

and we are left with the following subproblems in one dimension:

t
-At+ AA_, = 0 (19)

-A t+ BA¢=0 (20)

= + +Let us define n_, (_x/¢_ 2 + _,_v/@0x + _ 2) andn¢

The left and right eigenvector matrices of A and 13 are calculated by using the formulas in

App. I with n = n_ and n = n_, respectively. After eqs. (19) and (20) are diagonalized,

we upwind the derivatives of the characteristic variables according to the signs of the

corresponding eigenvalues. The time step At is chosen according to the CFL condition.

This method can be regarded as a two-dimensional interpretation of the method presented

in reference [6].

The boundary conditions can be split in a similar way. Consider, for example, the boundary

condition at the solid wall. Because eq. (19) is defined along the wall, the characteristic

variables can be upwinded according to the corresponding eigenvalues. On the contrary,

the third row of eq. (20), which corresponds to the characteristic with a speed of +a, is

replaced by the boundary condition in eq. (AIII.5). Note that the contravariant component

of the speed in the direction ¢ is 0; therefore, the resulting system can be written as

' = 0

AtW2 ' = 0

t " t " = _(p__p. t ' t ' (21)n,AA 2+nvAA 3 )cos0 -n_AA 2-nvAt 8

A,w;' : zxt(v/¢ + AmW:

where A(.) is the forward finite increment of the function (-) with respect to the super-

AW=

scripted variable and

AW2 = tL_IAA
Aw3
Aw4

In the third row of eq. (21), we have the functions of AtA ', which are computed separately

as mentioned. The other boundary conditions are enforced in the same pattern that is

presented above.



5 Optimization Experiments

The optimization problem is addressed with four different gradient-based criteria.

1. Steepest descent (SD1). The shape coefficients are updated as follows:

ai _ ai - v(O£/Oai), where v is a given parameter.

2. Steepest descent with v selected as shown (SD2). Because we know the gradient

V_Z; at the present iteration, we can use a tentative v and can compute the

gradient V_£'. By calculating Vo£ • V_£', we linearly estimate v such that

eventually V,£ • V_£" = 0. Each step of the optimization requires solution of

the flow-field and costate equations twice.

3. The BFGS algorithm (presented in reference [9]). This algorithm (BFGS1) ac-

counts for the curvature of the hypersurface L;. The shape coefficients are up-

dated according to the formula ai _-- ai - vdi, where d = (..., di, ...) is the

descent direction determined by d = H Vo£ and H is an estimate of the inverse

of the Hessian of the functional.

4. The BFGS algorithm (as above) with a linear estimate of v such that d. V_L;" =

0. Each optimization step requires solution of the flow-field and costate equations

twice (BFGS2).

The computations are performed on a 40 x 20 grid unless otherwise specified. Total pressure

and total temperature at the inlet are taken unitary and a(0, y) = 0. At the outlet, the

static pressure depends on the test case considered. For the lower wall ordinate y(@), we

have

0 if-0.5_<x<0
y(O) 4 (x-l) _ ifO<x<l_"_i= 10_i xi+l

0 ifl <x<l.5

The optimization consists in finding the four shape coefficients ai such that the modulus of

the gradient V_£ is 0. The flow-field and costate equations are iterated until the residuals

are less than 10 -2 .

Consider a test case in which a pressure distribution in a subsonic nozzle is found for which

the outlet pressure is 0.9 of the inlet total pressure. We take a = (2, 0, 0, 0) and define the

corresponding configuration as the optimal configuration. Then, we compute the flow field

and determine the pressure distribution on the lower wall. This pressure distribution p* is

the one we want to recover with the optimization algorithm. In fig. 6, the target flow field

and the starting configuration, obtained with a = (-2, 0, 0, 0), are shown along with the

convergence histories for DS1 and BFGS2.

For the supersonic case, we take a constant section channel as a starting configuration and

a = (2,0,0,0) as the target. In fig. 7, we present the results obtained when the outlet

pressure is lowered to 0.5 of the inlet total pressure. A relevant shock is generated in the

flow field. In the first optimization iterations, we updated the shape coefficients, as was

done for DS1. This step is necessary because this far from the minimum the functional



L: might be not convex; therefore, the estimate of v that was used would not be correct.

Figure 8 shows the sequence of lower walt configurations obtained with BFGS2. We also

tested the effect of grid coarseness by reducing the number of grid points to 20 × 10. (See

fig. 9.)

The second test case is designed to check the capability of the algorithm in detecting

minima in cases for which the desired pressure distribution is out of the design space (i.e.,

the functional is not 0 at the minimum). The pressure distribution p* is obtained with an

outlet boundary condition that differs from the distribution that is actually used in the

optimization routine. The results are given in fig. 10.

The DS1 updating strategy had the least attractive rate of reduction of the functional. Our

experience showed, nevertheless, that it was the most reliable in cases of complicated surface

topologies that can occur in flow fields with embedded shocks. The BFGS2 becomes the

most efficient of the algorithms tested when it is coupled with DS1. With this algorithm,

the functional was reduced by orders of magnitude.

Each optimization procedure with a 40 × 20 grid required 6 h of central processing unit

(cpu) time on a DEC 3000/500. The 20 × 10 case required 1 h of cpu time.

6 Concluding Remarks

We have derived an expression of the gradient of the cost function with respect to the shape

coefficients. The boundary conditions for the costate equations have been presented; we

have shown their relevance to the well posedness of the problem. In the case of shocks,

we provided the proper conditions for the costate equations at the discontinuity. On the

discrete level, we proposed a method of integrating the costate equations in accordance with

a revisited scheme. Additional work is needed to test the algorithm with more realistic test

cases and to apply the One-Shot method (reference [10]) to hyperbolic problems.
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Appendix I

The Jacobian matrices for the Euler equation in conservative variables are

i __

B

0 1 0 0

kV 2- u 2 (3-7)u -2kv 2k

--UU V U 0

(-Te+2kV2)u 7e- kV 2 - 2ku 2 -2kuv 7u

0 0 1 0

--UU V 11 0

kV 2 - v 2 -2ku (3- 7)v 2k

(-Te + 2kV2)v -2kuv 7e- kV 2 - 2kv 2 7v

(AI.1)

(AI.2)

The Jacobian in the direction n is C = Anx+Bn u. The left (L_) and right (L_ 1) eigenvector

matrices of C are

Ln

1 - kV2/a 2 2ku/a 2 2kvl. _ -2k/a 2

V,/p ndp -_./p o
(-v. + kV_la)lp (n_- 2ku/a)/p (ny - 2kv/a)/p 2k/pa

(I._ + kV2/a)/p -(n_= + 2ku/a)/p -(ny + 2kv/a)/p 2k/pa

t 0 p/2a p/2a

u pnu p(u + an.)12a p(u - an_:)12a

v pn_ p(v + any)/2a p(v - any)/2a

V2/2 -pVi p(V 2 + a2/k + 2aV,_)/4a p(V 2 + a2/k - 2aVn)/4a

where V, = V • n and Vt = V-t. The diagonal matrix D,

Vn o o o

0 _ 0 0

Dn = 0 0 V,_ + a 0

0

= L.C_L_ 1 is

0 0 Vn-a

(AI.3)

(AI.4)

(AI.5)

Appendix II

To calculate 6E.u, consider the increment U _ U + eU =_

F _ F + eAU + h.o.t, and G *-- G + eBU + h.o.t.

We obtain

_£u b Op I= f_ -_ (p-p*)Udx+fa
e

OpV UJds + h.o.t.+ _n

tA [(AU)_ + BU)y] dfl

(AII.1)
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If we apply Gauss'theorem to the secondintegral of the aboveequation then we find eq.
(7). Equations (8) and (9) areeasilyobtained.
To calculate 6£_, we first consider the variation of the functions defined on @:

_yy Op Vai *- ai + eS_i => p_ _ p_ + e fi 5_i and pV *-- pV + e--_-y fi 5_i.

Then, we consider the variation of the geometry; other higher order effects are disregarded.

When the geometry is perturbed, the domain of integration 12, the normal n and the

element of integration ds are perturbed. The domain _ is increased (fig. 4) by a quan-

tity eg_i fi cos 0 ds. The normal n is perturbed by a quantity -e(_i dfi/dx cos 2 0t; ds, by

e6_ dfi/dx cosOsinOds. (See fig. 5.)

Appendix III

Consider eq. (14). This equation defines the boundary conditions for A after we impose

the proper constraints on U. At the inlet, only one component of the variation of the flux

in the direction normal to the boundary Fn = (An,: + Bny)U is independent of the others

because total pressure, total temperature, and a are fixed. If we express all components of

_',_ in terms of p'-fi, we obtain

[_ + r/or/(1 - M2)]u

where _ = n_: + any, rI = (ny - an,:), H is the specific total enthalpy, and M is the local

Mach number. For an arbitrary choice of p_, from eq. (14) we have

AI_ + A2u [_ + r/a/(1- 342)] + A3u [a_- rl/(1- M2)] -t- A4H_ :0 (AIII.1)

At the outlet, if the flow is subsonic, then only the static pressure is fixed; therefore, three

components of the vector U are arbitrary. If we take fi-e as the dependent variable, we have

y (v. +
+

- (Tp/2kp + u2+ v2)

pun,: + pvny

un,:)+ -  uVn
+ - i,vVn

+ __(Vnt, + Hn_:) + _(Vnv + Hny)

For an arbitrary choice of/5, _, and fi'_, from eq. (14) we have

A_n,: + A2(V,_ + un,:) + A3vn,: + A4(Vnu + Hn_:) = 0

/_lny + )_2'//,'n,y -_ ,_3(_n "3t- ?)ny) .-11- ._4(Vnv -11- Hny) = 0

A2uk_ + AavVn + A4Vn('yp/2kp + u 2 + v 2) = 0

(AIII.2)

11



For a supersonicoutlet, no conditionsexist on U; therefore,wehave

A = 0. (AIII.3)

If a shock is embeddedin the flow field, then the shock is consideredas a boundary for
the costateequations.The consequentboundaryconditionsareapplied on eachside of eq.
(AIII.3) beforethe shockand eq. on eachsideof (AIII.1) after the shock.
For the upper wall, wehave

[0]ny

0

such that for an arbitrary choice of/_ eq. (14) is satisfied if

A2n_ + A3ny = 0 (AIII.4)

At the lower wall, eq. (13) applies. Because the rank of An_ + Bn_ at the wall is 2, the

system has only two linearly independent rows. We obtain

A2nx --k A3ny q- (pW _ p.) cos 0 = 0 (aIII.5)

which is the boundary condition for A, and

_/ = -- [)_1 + tt"_2 "JC V)_3 -[-(')'e -- ]gV2)._4]

which is the relation between p and A on the boundary.

(AIII.6)

12



Figure 1: Physical space.

f2

Figure 2: Model problem.
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(a) Target Mach-numberfield. (b) Starting configuration.
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Figure 9: Results with 20 x 10 grid.
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